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Abstract

On the basis of medium discretization and local linear approximation of refractive index distribution, the curved ray

tracing technique is used in combination with the pseudo source adding method to numerically solve the radiative heat

transfer in a semitransparent slab with an arbitrary refractive index distribution and two diffuse gray walls. The ra-

diative equilibrium temperature field of a linear refractive index distribution is evaluated by this method and the results

show excellent agreement with that of the previous research. For two types of sinusoidal refractive index distributions,

the radiative equilibrium temperature field as well as the temperature and heat flux fields of coupled radiation–con-

duction are investigated in detail. The results show considerable significance of the gradient refractive index effect, and

some important conclusions are to be obtained.
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1. Introduction

The radiative heat transfer in a gradient refractive

index medium can be found in many technology pro-

cesses, such as the heating of glass and thermal protect-

ing coatings, the manufacturing of waveguide materials,

the ray transporting through atmosphere, as well as the

optical measurement of flame and other semitransparent

medium. But the investigation on such heat transfer in a

gradient refractive index medium has not been found

until recent years. In 2000, Ben Abdallah and Le Dez put

forward a curved ray tracing technique to solve the ra-

diation transfer in a gradient refractive index medium,

and first analyzed the thermal emission of a semitrans-

parent slab with variable spatial refractive index [1]. By

this method, they also investigated the radiation transfer

and coupled radiation–conduction inside a semitrans-

parent slab with variable spatial refractive index [2,3], as

well as the thermal emission of a two-dimensional rect-

angular cavity [4]. In 2002, Xia and Huang et al. analyzed

the thermal emission and volumetric absorption of a

graded index semitransparent medium layer by a ray

splitting and tracing technique [5], and resorting to a

pseudo source adding method to deal with the radiative

intensity on boundary surfaces, the curved ray tracing

technique is used to solve the radiation transfer and the

couple radiation–conduction in a gradient refractive in-

dex slab with gray boundaries [6,7]. Also in 2002, Lem-

onnier and Le Dez presented a discrete ordinate solution

of radiative transfer across a slab with variable refractive

index [8]. All these researches have show the considerable

effect of gradient refractive index on radiation transfer in

medium.

In this paper, the radiative heat transfer in an ab-

sorbing-emitting semitransparent slab with an arbitrary
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refractive index distribution and diffuse gray boundaries

is to be solved numerically. For two types of sinusoidal

refractive index distributions, the radiation transfer and

coupled radiation–conduction are analyzed in detail.

2. Geometrical and physical model

Consider an infinite parallel plane slab of absorbing–

emitting but non-scattering gray medium of thickness d,
as shown in Fig. 1. The emissivities of the two diffuse

gray boundary walls are e0 and ed , and the temperatures
are T0 and Td , respectively. The medium is characterized
by a constant absorption coefficient j, a constant thermal
conductivity k and a refractive index distribution nðzÞ. A
steady state temperature field T ðzÞ will be caused by the
coupled radiation–conduction in medium. Radiation will

dominate the heat transfer process if the thermal con-

ductivity k is small enough, and the temperature field
would be a radiative equilibrium one thereby.

3. Discretization and solution

3.1. Discretization

As shown in Fig. 2, the medium is divided into M � 2
isothermal sublayers of equal thickness Dz. The two

Nomenclature

ak coefficient denoting the influence of tem-

perature of sublayer k on I�ð0; nÞ
Ak coefficient denoting the influence of tem-

perature of sublayer k on I01
b, b0 coefficients denoting the influence of sub-

layer temperature on Iðzj; nÞand Iðzj;�nÞ,
respectively

Bkj, B0
kj coefficients defined in Eqs. (27) and (28),

respectively

ck coefficient denoting the influence of tem-

perature of sublayer k on Iþðd; nÞ
Ck coefficient denoting the influence of tem-

perature of sublayer k on Id1
Dkj coefficients defined in Eq. (36)

d slab thickness, m

I radiative intensity, W/m2 sr

I�ðjÞ reduced radiative intensities (n ¼ 1) at the
jth splitting point, W/m2 sr

Kij influencing factor denote the coupling in-

fluence of the two boundaries

L number of discrete angles of the hemi-

spherical space

nðzÞ refractive index distribution

~nnðzÞ linear approximation of refractive index

distribution in a sublayer

M number of sublayers

N radiative–conductive parameter, N ¼ kj=
ð4rn2RT 3RÞ; nR ¼ ðnmax þ nminÞ=2

q heat flux density, W/m2

q� dimensionless heat flux, q� ¼ q=qR; qR ¼
rT 4R

sðjÞ curve length of the propagating route be-

tween two tracing points

T temperature, K

TR reference temperature, TR ¼ ðT0 þ TdÞ=2, K
z space coordinate, m

Dz sublayer thickness, m

Greek symbols

e emissivity of boundary wall

f angle between the ray propagating direction

and the interface normal

j absorption coefficient, m�1

k thermal conductivity, W/mK

n polar angle of propagating direction

r Stefan–Boltzmann constant, 5:729� 10�8
W/m2 K4

s optical thickness, s ¼ jd
X spatial direction

Superscripts and subscripts

þ;� direction from boundary 2 to boundary 1

()) or from boundary 1 to boundary 2 (þ)
c conduction

d position of z ¼ d
j, k sublayer order

0 position of z ¼ 0
p pseudo source

r radiation

t total radiation and conduction
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Fig. 1. Schematic diagram of geometrical and physical model.
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boundary walls are regarded as the sublayers of zero

thickness, and named as the first sublayer and the Mth
one, respectively. The temperature of a sublayer k in
medium, with center zk , is denoted by Tk . The refractive
index distribution nðzÞ within a sublayer is substituted
by a linear approximation ~nnðzÞ, as

~nnðzÞ ¼ nðzk � Dz=2Þ þ z� zk þ Dz=2
Dz

½nðzk þ Dz=2Þ

� nðzk � Dz=2Þ
; ð1Þ

where, 26 k6M � 1, and ðk � 2ÞDz6 z6 ðk � 1ÞDz.

3.2. Solution of radiative intensities leaving gray bound-

aries

The radiative intensity leaving a gray boundary is the

combination of boundary emission and reflection. It can

be solved by employing the pseudo source adding

method in combination with the curved ray tracing

technique. The solution can be divided into the follow-

ing steps.

(i) Deduce the radiative intensity reaching a boundary

without considering the boundary emission and re-

flection.

Take the solution of radiative intensity reaching the

boundary 1 as an example, which is denoted by I�ð0; nÞ.
By tracing the trajectory of a curved ray propagating in

the reverse direction of n , a series of recursion relations
can be deduced [1–3,6,7], which are

I�ð0; nÞ
n2ð0Þ ¼ rT 42

p
1
�

� e�jsð1Þ�þ I�ð1Þe�jsð1Þ; ð2Þ

I�ðjÞ ¼ rT 4l
p

1
�

� e�jsðjþ1Þ�þ I�ðjþ 1Þe�jsðjþ1Þ

ðj ¼ 1; 2; 3; . . .Þ; ð3Þ

where T2 is the temperature of the second sublayer, Tl is
that of the lth sublayer located from jth to (jþ 1)th

tracing point, and sðjþ 1Þ is the curve length of the
propagating route accordingly.

Two typical propagating trajectories for the curved

ray tracing have been shown in Fig. 3. The ray tracing

process is ended when a boundary surface is reached or

the influence of radiative intensity I�ðjþ 1Þ on I�ð0; nÞ
can be neglectable, and the value of I�ðjþ 1Þ is set to be
zero. Resorting to the previous analysis on the propa-

gating route of a ray in a linear refractive index medium

[6,7], the following equations can be gained to evaluate

the curve length between two adjacent tracing points, i.e.

for n0 sin fout < n00,

sðjþ 1Þ ¼ Dz
n00 � n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n002 � n02 sin2 fout

q�
� n0 cos fout

�
;

fin ¼ arc sinðn0fout=n00Þ ð4Þ

and for n0 sin fout P n00,

sðjþ 1Þ ¼ 2Dzn
0 cos fout

n0 � n00
;

fin ¼ fout; ð5Þ

where n0 is the refractive index value at the boundary 1
or the jth tracing point, n00 is that at the other interface
of the sublayer which the ray is propagating through,

and f is the angle between the propagating direction of
the ray and the interface normal at a tracing point. The

subscript �out� denotes the current tracing point, and �in�
denotes the next one.

It can be seen from the above equations, that I�ð0; nÞ
is a function of the sublayer temperatures, which can be

written as

I�ð0; nÞ
n2ð0Þ ¼ r

p

XM�1

k¼2
akT 4k ; ð6Þ

where ak is a coefficient denoting the influence of the
temperature of sublayer k on I�ð0; nÞ, and it is evaluated
by the numerical summing in the curved ray tracing

process.

Similarly, without considering the boundary emission

and reflection, the expression for calculating the radia-

tive intensity reaching the boundary 2 can be deduced,

which is

Iþðd; nÞ
n2ðdÞ ¼ r

p

XM�1

k¼2
ckT 4k ; ð7Þ

where ck is a coefficient denoting the influence of the
temperature of sublayer k on Iþðd; nÞ, and it is also
evaluated by the numerical summing in the curved ray

tracing process.

(ii) Take account of the boundary reflection and emis-

sion

The reflected energy by a diffuse gray wall will

mix together with the radiative energy emitted by it.
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Fig. 2. Discretization of the slab.
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Introduce the mixed radiative intensities I01 and Id1 for
the two boundaries respectively, which are defined by

the following equations.

I01 ¼ 2ð1� e0Þ
Z p=2

0

I�ð0; nÞ sin n cos ndn

þ n2ð0Þe0rT 40 =p; ð8Þ

Id1 ¼ 2ð1� edÞ
Z p=2

0

Iþðd; nÞ sin n cos ndn

þ n2ðdÞedrT 4d =p: ð9Þ

Resorting to Eq. (6), the integral term in Eq. (8) can

be solved and expressed as

Z p=2

0

I�ð0; nÞ sin n cos ndn

¼ rn2ð0Þ
p

XL
i¼1

XM�1

k¼2
akT 4k sin ni cos ni

p
2L

; ð10Þ

where L is the number of discrete angles of the hemi-
spherical space, and ni is the discrete direction, ni ¼
ði� 0:5Þp=2L. So, Eq. (8) can be reformed as

I01 ¼
rn2ð0Þ

p

XM
k¼1

AkT 4k ; ð11Þ

where T1 ¼ T0, TM ¼ Td , A1 ¼ e0, AM ¼ 0.
Similarly, Eq. (9) can be reformed as

Id1 ¼
rn2ðdÞ

p

XM
k¼1

CkT 4k ; ð12Þ

where C1 ¼ 0, CM ¼ ed .
Obviously, only the once reflection and the emission

of the boundary surface is included in I01 or Id1, and the
influence of the other boundary is not considered. So, I01
and Id1 are not the real radiative intensities leaving the
boundaries. They are named as the radiative intensities

of the first pseudo sources.

(iii) Take account of the coupling influence of the two

boundaries.

If the medium refractive index is constant, the radi-

ative energy from a boundary cannot propagate back to

it before being reflected by the other boundary. In a

gradient refractive index medium, however, the inner

total refraction will lead to this phenomenon. So, the

radiative energy leaving a boundary can partly reach the

other boundary and partly return back after propagat-

ing in the gradient refractive index medium. An influ-

encing factor Kij is introduced to denote the coupling

influence of the two boundaries. It refers to the per-

centage of radiative energy arriving at the boundary j in
all of the radiative energy leaving the boundary i. By

Fig. 3. Schematic diagram of the curved ray tracing process.
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tracing the propagating process of a curved ray leaving a

boundary, the expressions for calculating Kij can be

deduced, such as

K12 ¼ 2
Xm
i¼1

exp

"
� j

XNi

j¼1
sðjÞ
#
sin ni cos ni

p
2L

; ð13Þ

K11 ¼ 2
XL
i¼mþ1

exp

"
� j

XNi

j¼1
sðjÞ
#
sin ni cos ni

p
2L

; ð14Þ

where m is the number of rays arriving at the boundary
2, L� m is that returning to the boundary 1, and Ni is

the number of sublayers which the curved ray i has
propagated through. The similar equations can be ob-

tained for K21 and K22.
(iv) Deduce the radiative intensities leaving the two

boundaries.

After propagating through the medium, the radiative

energy of the first pseudo sources at the boundary 1 and

that at the boundary 2 can partly reach the boundary 1

to be reflected diffusely. And the reflected energy is

named as the second pseudo source emission of the

boundary 1. Similarly, the second pseudo source emis-

sion of the boundary 2 is defined. Their radiative in-

tensities are calculated by the following equations.

I02 ¼ ð1� e0ÞðK11I01 þ K21I02Þ; ð15Þ

Id2 ¼ ð1� edÞðK12I01 þ K22I02Þ: ð16Þ

By the same way, a series of pseudo source emission can

be defined for a boundary, and the sum of the radiative

intensities of a pseudo source series is just the real ra-

diative intensity leaving the boundary. So, the radiative

intensities leaving the two boundaries are

I0 ¼ I01 þ I02 þ I03 þ � � � ; ð17Þ

Id ¼ Id1 þ Id2 þ Id3 þ � � � : ð18Þ

By considering Eqs. (11,12,15,16), the above two

equations can be reformed as

I0 ¼
rn2ð0Þ

p

XM
k¼1

Ak þ CkK21ð1�e0Þn2ðdÞ
1�K22ð1�ed Þ½ 
n2ð0Þ

1� ð1� e0Þ K11 þ K12K21ð1�ed Þ
1�K22ð1�ed Þ

h i T 4k
¼ rn2ð0Þ

p

XM
k¼1

A0
kT

4
k ; ð19Þ

Id ¼
rn2ðdÞ

p

XM
k¼1

Ck þ AkK12ð1�ed Þn2ð0Þ
1�K11ð1�e0Þ½ 
n2ðdÞ

1� ð1� edÞ K22 þ K21K12ð1�e0Þ
1�K11ð1�e0Þ

h i T 4k
¼ rn2ðdÞ

p

XM
k¼1

C0
kT

4
k : ð20Þ

It can be seen that, I0 and Id equal to the radiative
intensities emitted from two black walls with tempera-

tures Tp0 and Tpd , respectively, which are

T 4p0 ¼
XN
k¼1

A0
kT

4
k ; T 4pd ¼

XN
k¼1

C0
kT

4
k : ð21Þ

By the deduction and analysis above, the solution of

radiative transfer in a gradient refractive index medium

with two diffuse gray boundaries is transformed into

that with black boundaries, and the radiative intensities

leaving boundaries are solved.

3.3. Solution of temperature field at radiative equilibrium

At radiative equilibrium, the heat transfer in medium

is only by radiation, and under the steady state, the

radiative energy isotropically emitted from any infini-

tesimal volume of the medium equals to that direction-

ally absorbed over the whole space. Thus the energy

balance equation is

4n2ðsÞrT 4ðsÞ ¼
Z

X¼4p
Iðs;XÞdX; ð22Þ

where Iðs;XÞ is the radiative intensity of medium at

position s and in direction X. For the slab, the azimuthal
symmetry leads toZ

X¼4p
Iðs;XÞdX ¼ 2p

Z p=2

0

½Iðz; nÞ þ Iðz;�nÞ
 sin ndn:

ð23Þ

For any sublayer j with center zj, similar to that in
Section 3.2, we can deduce equations to calculate the

radiative intensities Iðzj; nÞ and Iðzj;�nÞ as

Iðzj; nÞ
n2ðzjÞ

¼ r
p

XM�1

k¼2
bkT 4k

 
þ b1T 4p0 þ bMT 4pd

!
; ð24Þ

Iðzj;�nÞ
n2ðzjÞ

¼ r
p

XM�1

k¼2
b0kT

4
k

 
þ b01T

4
p0 þ b0MT

4
pd

!
; ð25Þ

where bk and b0k are coefficients denoting the influences
of Tk .
The energy balance equation can thus be transformed

into the following discrete form:

4n2ðzjÞrT 4j ¼ 2rn2ðzjÞ
XL
i¼1

XM�1

k¼2
ðbk

"
þ b0kÞT 4k þ ðb1 þ b01ÞT 4p0

þ ðbM þ b0M ÞT 4pd

#
sin ni

p
2L

: ð26Þ

This can be reformed further as

T 4k ¼
XM�1

j¼2
BjkT 4j þ B1;kT 4p0 þ BM ;kT 4pd : ð27Þ

The discrete temperature field in medium can be fi-

nally given as
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where H ¼ T 4, B0
kj ¼ �1

2
B1;jC0

k � 1
2
BM ;jA0

k .

The form of Eq. (28) is same as that in [6], but

the solutions of coefficients Bkj, A0
k and C0

k are different.

For a linear refractive index distribution considered

in [6], they can be exactly solved, but for other refrac-

tive index distributions, they have to be solved numeri-

cally.

3.4. Solution of coupled radiation–conduction

For the coupled radiation–conduction in medium,

the energy balance equation at a steady state is

divðqr þ qcÞ ¼ 0; ð29Þ

where qr and qc are the heat fluxes transferred by radi-
ation and conduction, respectively. For a one-dimen-

sional problem, the divergences of them are

divqr ¼ j 4n2ðzÞrT 4ðzÞ
�

� 2p
Z p=2

0

Iðz; nÞ½ þ Iðz;� nÞ
 sin ndn

�
;

ð30Þ

divqc ¼ �k
d2T
dz2

: ð31Þ

For any sublayer j with center zj, the discrete form of
Eq. (30) can be deduced by the analysis similar to that of

Eq. (24), which is

divqr ¼ 4jrn2j 1

 "
�
B1jC0

j

2
�
BMjA0

j

2
� Bjj

2

!
T 4j

� B1jC0
1 þ BMjA0

1

2
T 40 �

B1jC0
M þ BMjA0

M

2
T 4d

�
Xj�1
k¼2

B1jC0
k þ BMjA0

k þ Bkj

2
T 4k

�
XM�1

k¼jþ1

B1jC0
k þ BMjA0

k þ Bkj

2
T 4k

#
: ð32Þ

By the finite difference method, Eq. (31) can be discret-

ized as

divqc ¼ k
12T2 � 8T0 � 4T3

3Dz2
; for j ¼ 2

divqc ¼ k
2Tj � Tj�1 � Tjþ1

Dz2
; for 36 j6M � 2

divqc ¼ k
12TM�1 � 4TM�2 � 8Td

3Dz2
; for j ¼ M � 1:

ð33Þ

Substitute Eqs. (32) and (33) into Eq. (29) to get the

discrete energy equation for sublayer j. By linearizing
the T 4j term, it is transformed into an algebraic equation.
And a set of algebraic equations can be obtained for all

sublayers. By an iterative solution, the temperature field

induced by coupled radiation–conduction in medium

can be finally evaluated.

3.5. Radiative flux field of coupled radiation–conduction

The radiative flux field inside the slab can be ex-

pressed as

qrðsÞ ¼
Z

X¼4p
Iðs;XÞXdX: ð34Þ

The azimuthal symmetry leads to

Z
X¼4p

Iðs;XÞXdX ¼ 2p
Z p=2

0

Iðz; nÞ½ � Iðz;� nÞ
 sin n cos ndn:

ð35Þ

So for any sublayer j with center zj, the following
expression for evaluating the discrete radiative flux qrj
can be deduced.

qrj ¼ 2rn2ðzjÞ
XL
i¼1

XN�1

k¼2
ðbk

"
� b0kÞT 4k þ ðb1 � b01ÞT 4p0

þ ðbN � b0N ÞT 4pd

#
sin ni cos ni

p
2L

¼ 2rn2ðzjÞ
XN�1

k¼2
DkjT 4k

 
þ D1jT 4p0 þ DN ;jT 4pd

!
: ð36Þ

1 0 0 0 0

B0
12 1þ B0

22 � B22
2

B0
32 � B32

2
B0
M�1;2 �

BM�1;2
2

B0
M ;2

B0
1;M�1 B0

2;M�1 �
B2;M�1
2

1þ B0
M�1;M�1 �

BM�1;M�1
2

B0
M ;M�1

0 0 0 1

0
BBBBBBBB@

1
CCCCCCCCA

H1

H2

HM�1
HM

0
BBBBBB@

1
CCCCCCA

¼

T 40
0

0

T 4d

0
BBBBBB@

1
CCCCCCA
; ð28Þ
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4. Results and discussion

In the calculations below, the slab thickness and

boundary temperatures keep constant, which are d ¼
1:0 cm, T0 ¼ 1000 K and Td ¼ 1500 K, respectively.

4.1. Temperature field at radiative equilibrium

The radiative equilibrium temperature field in a

semitransparent slab with the linear refractive index

distribution of nðzÞ ¼ 1:2þ 0:6z=d has been presented in
[2,6]. It is also calculated by the numerical method in

this paper, and the almost same results are obtained, as

shown in Fig. 4.

In Fig. 5, the radiative equilibrium temperature fields

under two kinds of sinusoidal refractive index distribu-

tions are shown, which are dashed lines for nðzÞ ¼ 1:2þ
0:6 sinðpz=dÞ and solid lines for nðzÞ ¼ 1:8� 0:6 sinðpz=
dÞ. For a large range of optical thickness s, a consider-
able difference can be found between the temperature

fields of the two sinusoidal refractive index distribu-

tions, and it is significantly related to the emissivities

of the two boundaries. For example, for a fixed opti-
cal thickness and a fixed couple of boundary emissivi-

ties, the maximum temperature difference in medium,
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3
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)

z / d

Fig. 4. Temperature field inside the slab at radiative equilib-

rium: nðzÞ ¼ 1:2þ 0:6z=d. (1) e1 ¼ e2 ¼ 1; (2) e1 ¼ 1, e2 ¼ 0:2;
(3) e1 ¼ 0:2, e2 ¼ 1.

Fig. 5. Temperature field inside the slab at radiative equilibrium. (1) e1 ¼ e2 ¼ 1; (2) e1 ¼ e2 ¼ 0:7; (3) e1 ¼ e2 ¼ 0:2; (4) e1 ¼ 1,
e2 ¼ 0:2; (5) e1 ¼ 0:2, e2 ¼ 1. Dashed lines: nðzÞ ¼ 1:2þ 0:6 sinðpz=dÞ; solid lines: nðzÞ ¼ 1:8� 0:6 sinðpz=dÞ.
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i.e. T ðdÞ� T ð0Þ, is much smaller for nðzÞ ¼ 1:2þ
0:6 sinðpz=dÞ than for nðzÞ ¼ 1:8� 0:6 sinðpz=dÞ. And
for the refractive index distribution of nðzÞ ¼ 1:2þ
0:6 sinðpz=dÞ and the optical thickness s ¼ 0:1, T ðdÞ�
T ð0Þ is about 25 K under two black boundaries, but

only 5 K under two gray boundaries with emissivities

of 0.2.

The influence of boundary emissivities is easy to

understand. Because the two boundaries can be re-

garded as the black walls with temperature Tp0 and Tpd ,

and T ðdÞ � T ð0Þ is proportional to ðTpd � Tp0Þ, which
descends with the decrease of boundary emissivities.

The difference between the radiative equilibrium

temperature fields of two kinds of sinusoidal refractive

index distributions is mainly caused by the different

characteristics of the radiation transfer. When the re-

fractive index distribution is nðzÞ ¼ 1:2þ 0:6 sinðpz=dÞ,
the rays leaving any boundary can reach the other

one after being attenuated by medium, i.e. no total

reflection occurs for these rays, and the influencing
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Fig. 6. Temperature field inside the slab at coupled radiation and conduction heat transfer. (1) e1 ¼ e2 ¼ 1; (2) e1 ¼ 1, e2 ¼ 0:2;
(3) e1 ¼ 0:2, e2 ¼ 1. Dashed lines: nðzÞ ¼ 1:2þ 0:6 sinðpz=dÞ; solid lines: nðzÞ ¼ 1:8� 0:6 sinðpz=dÞ.
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factors K11 ¼ 0, K22 ¼ 0. For the case of nðzÞ ¼ 1:8�
0:6 sinðpz=dÞ, however, the rays leaving a boundary will
partly return back to it because of the total reflection,

and K11 6¼ 0, K22 6¼ 0. So, in this case, compared with the
former, the radiative energy is more difficult to be

transferred from the high temperature boundary to the

low temperature boundary, and this leads to a larger

value of T ðdÞ � T ð0Þ. On the other hand, in the case of
nðzÞ ¼ 1:2þ 0:6 sinðpz=dÞ, the total reflection taking

place near the middle of slab results in a more flat

temperature distribution, as shown by the dashed lines

in Fig. 5.
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4.2. Temperature and heat flux of coupled radiation–

conduction

The steady state coupled radiation–conduction heat

transfer in a slab with the sinusoidal refractive index

distribution is calculated, and the influences of optical

thickness s, radiative–conductive parameter N and the

boundary emissivities are considered. The results of

temperature field and heat flux are shown in Figs. 6 and

7, respectively.

For a moderate optical thickness and a small radia-

tive–conductive parameter, such as s ¼ 1 and N ¼ 0:01,
or s ¼ 0:1 and N ¼ 0:001, the radiation transfer plays
the dominating role in the coupled heat transfer, ac-

cordingly, the temperature fields show great departure

from the linear distribution, and the effect of refractive

index distribution is significant (see Fig. 6). The tem-

perature fields under the two sinusoidal refractive index

distributions are quite different in these cases.

Because of the different characteristics of radia-

tion transfer, the temperature of nðzÞ ¼ 1:2þ 0:6 sinðpz=
dÞ (dashed lines), compared with that of nðzÞ ¼ 1:8�
0:6 sinðpz=dÞ (solid lines), is lower in the adjacent region
of high temperature boundary but higher in that of the

other boundary, and becomes more flat in the main

middle region. This is true whether the two boundaries

are both black or one is black and the other gray.

When the high temperature boundary is gray, the

temperature level in medium is lowered, and that will

change contrarily if the low temperature boundary is

gray. But the form of temperature curve does not change

compared with that of two black boundaries (see Fig. 6).

Except for the case of s ¼ 1 and N ¼ 0:01 (see Fig. 7)
for the most groups of optical thickness and radiative–

conductive parameter, the total heat flux qt of coupled
heat transfer under nðzÞ ¼ 1:2þ 0:6 sinðpz=dÞ is larger
than that under nðzÞ ¼ 1:8� 0:6 sinðpz=dÞ. The distri-
butions of radiative heat flux qr show great difference for
the two sinusoidal refractive index distributions. For the

case of nðzÞ ¼ 1:2þ 0:6 sinðpz=dÞ, only one peak appears
in a curve of qr, but when the optical thickness is large
enough, two peaks of qr can be seen for the case of
nðzÞ ¼ 1:8� 0:6 sinðpz=dÞ. It should be pointed out that,
for a constant or linear refractive index distribution, the

radiative heat flux of the coupled heat transfer shows

only one peak [7].

5. Conclusion

The following conclusions can be drawn from this

investigation.

1. The presented numerical method for solving the radi-

ation transfer is flexible and reliable enough for an ar-

bitrary refractive index distribution and diffuse gray

boundaries.

2. The effect of gradient refractive index on radiation

transfer is considerably significant within a large

range of optical thickness, the temperature and heat

flux fields can be quite different for two different re-

fractive index distributions.

3. For the coupled radiation–conduction heat transfer

in medium, a sinusoidal refractive index distribution

can result in a complex radiative heat flux distribu-

tion with one or two peaks.

4. The boundary emissivities can greatly influence the

temperature level in medium, but do not change the

form of temperature curve.
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